The diffusion model is one of the most prominent response time models in cognitive psychology. The model describes evidence accumulation as a stochastic process that runs between two boundaries until a threshold is hit, and a decision is made. The model assumes that information accumulation follows a Wiener diffusion process with normally distributed noise. However, the model's assumption of Gaussian noise might not be the optimal description of decision making. We argue that Lévy flights, incorporating more heavy-tailed, non-Gaussian noise, might provide a more accurate description of actual decision processes. In contrast to diffusion processes, Lévy flights are characterized by larger jumps in the decision process.
Python